Active faults of the broader Aegean region in

The Greek Database of Seismogenic Sources

http://gredass.unife.it/

The Gre.Da.S.S. Working Group consists of:

Sotiris Sboras, Alexandros Chatzipetros, Ioannis Koukouvelas, Anastasia Michailidou, George Papathanassiou, Sotiris Valkaniotis, Anna Zervopoulou

Acronyms:

AACB: Adria-Aegean Convergence Boundary
ATFZ: Amvrakikos Gulf - Trichinida Fault Zone
ArG: Argolikos Gulf Fault
BMG: Buyuk Menderes Graben
DeeP: Delphi Basin
EPIRUS: Pindos Basin
GDR: Greece Deep-Sea Ridge
IBM: Ionian Basin Mosaic
IAM: Ionian Arc Mosaic
IART: Ionian Arc Ridge Transition
MTS: Mediterranean Trench System
PB: Ptolemaida Basin
SAB: Saronikos-Artemisio-Bramante Basin
SAB: Saros-Artemisio-Bramante Basin
SBR: Saronikos-Brazza Ridge
STR: Sterea Ellada (The Greek Mainland)
WGR: Western Gulf Ridge
XK: Xanthi-Kastoria-Nafplio Geospatial Network
ZK: Zakynthos-Kythera Geospatial Network
ZKB: Zakynthos-Kythera-Brazilian Continental Margin

Seismogenic Sources:

Individual Seismogenic Sources: They are obtained from geological and geophysical data and are characterized by the set of geometric (strike, dip, length, width, and depth), kinematic (average displacement per unit length, geometric (strike, dip, length, width, and depth), seismological (magnitude, slip rate, return period) parameters. ISSs are assumed to exhibit "characteristic" behaviour with respect to rupture length/width and expected mean and maximum magnitude. Moreover, ISSs can also be "empty" of ISSs if none can be recognized. The seismic behaviour of the CSSs is essentially inferred on the basis of regional surface and subsurface geological data that are exploited well beyond the accuracy of the information supplied over the completeness of the sources themselves. As such, they can be used for determining large-scale geodynamic processes. A CSS can represent a large fault zone which can consist of one or more seismically active faults, but their potential can derive from existing earthquake catalogues or other geological considerations. A CSS with respect to rupture length/width and expected mean and maximum magnitude. Moreover, ISSs can also be

Composite Seismogenic Sources: They are obtained from geological and geophysical data and characterized by geometric (strike, dip, length, width, depth), seismological (magnitude, slip rate, return period) parameters. ISSs are assumed to exhibit "characteristic" behaviour with respect to rupture length/width and expected mean and maximum magnitude. Moreover, ISSs can also be "empty" of ISSs if none can be recognized. The seismic behaviour of the CSSs is essentially inferred on the basis of regional surface and subsurface geological data that are exploited well beyond the accuracy of the information supplied over the completeness of the sources themselves. As such, they can be used for determining large-scale geodynamic processes. A CSS can represent a large fault zone which can consist of one or more seismically active faults, but their potential can derive from existing earthquake catalogues or other geological considerations. A CSS with respect to rupture length/width and expected mean and maximum magnitude. Moreover, ISSs can also be

The Greek Database of Seismogenic Sources is a tool for the Greek national and international research community and modern tool for improving the Seismological Hazard Assessment (SHA) of the region, and for the one that went to deal with earthquake scenarios and monitoring, geodynamics, active faulting and many more. The database is open, continuously updated, and its data accessible to researchers for a GIS-based database consisting of several thousand geospatial and bibliographic, for the best and complete bibliography. Visit our website.

Database manager:

Sotiris Sboras, Alexandros Chatzipetros, Ioannis Koukouvelas, Anastasia Michailidou, George Papathanassiou, Sotiris Valkaniotis, Anna Zervopoulou

Database structure & technical support:

Sotiris Sboras

Visit our website.

http://gredass.unife.it/

The Greek Database of Seismogenic Sources is a tool for the Greek national and international research community and modern tool for improving the Seismological Hazard Assessment (SHA) of the region, and for the one that went to deal with earthquake scenarios and monitoring, geodynamics, active faulting and many more. The database is open, continuously updated, and its data accessible to researchers for a GIS-based database consisting of several thousand geospatial and bibliographic, for the best and complete bibliography. Visit our website.